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Abstract

The analysis of the shape of signals in NMR spectra is a powerful tool to study exchange and reaction kinetics.
Line shapes in two-dimensional spectra of proteins recorded for titrations with ligands provide information about
binding rates observed at individual residues. Here we describe a fast method to simulate a series of line shapes
derived from two-dimensional spectra of a protein during a ligand titration. This procedure, which takes the
mutual effects of two dimensions into account, has been implemented in MATLAB as an add-on to NMRLab
(Günther et al., 2000). In addition, more complex kinetic models, including sequential and parallel reactions, were
simulated to demonstrate common features of more complex line shapes which could be encountered in protein-
ligand interactions. As an example of this method, we describe its application to line shapes obtained for a titration
of the p85 N-SH2 domain of PI3-kinase with a peptide derived from polyomavirus middle T antigen (MT).

Introduction

Line shape analysis of signals in NMR spectra is
a well-established method to study the kinetics of
processes occurring on a micro- to millisecond time
scale (Rao, 1989; Sandström, 1982; Lian and Roberts,
1993). Unlike many other methods for kinetic in-
vestigation, NMR spectroscopy can provide kinetic
information on individual residues of a protein. In
some cases it is also possible to obtain equilib-
rium constants. Increasing use of NMR to analyze
protein-ligand interactions is opening new opportuni-
ties for line shape analysis. However with very few
exceptions, line shapes have been derived from one-
dimensional NMR spectra. The degeneracy of chem-
ical shifts in proteins restricts this type of analysis to
the study of isolated protons. Line shape analysis has
been used in this way to investigate protein folding by
monitoring line broadening of the aromatic signals of
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a protein (Huang and Oas, 1995; Burton et al., 1998).
Protein-ligand interactions have also been frequently
studied by monitoring the line broadening of the NMR
signals of small ligands when they are bound to large
proteins (Fejzo et al., 1999; Hoyt et al., 1994). Al-
though analysis of line shapes has most commonly
been carried out on one-dimensional spectra, lines can
also be obtained from two-dimensional NMR spectra.
This elegant approach has been applied by Balbach to
study protein-folding (Balbach et al., 1996). In some
instances it has been used to analyze protein-ligand
interactions (Craven et al., 1996; Johnson et al., 1998).
In studying the kinetics of protein-ligand interactions,
the variation of line shapes as a function of the lig-
and concentration provides information for individual
residues. Here, the variation of line shapes as a func-
tion of the ligand concentration provides information
on the kinetics of the interaction. Another great ad-
vantage of NMR line shape analysis is that it can
potentially provide qualitative insight into the mech-
anism of reactions. For example, Hensman showed
different kinetic mechanisms for two different residues
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of the N-SH2 domain of PI3-kinase (Hensmann et al.,
1994).

Our goal was to develop a readily applicable rou-
tine for the simulation of individual dimensions of
two-dimensional spectra. Such analysis of line shapes
of signals derived from 15N-HSQC spectra in either
the proton or nitrogen dimension allows calculation
of off-rates for the protein-ligand interaction observed
at individual amino acid residues of the protein. A
detailed theoretical treatment of line shapes in two-
dimensional HSQC spectra including the treatment of
non-equilibrium chemical exchange has recently been
published (Helgstrand et al., 2000). However, it is
impractical to simulate the complete two-dimensional
signal for series of line shapes in HSQC spectra.
Therefore we decided to simulate cross-sections for
both spectral dimensions. Because line broadening oc-
curs in both spectral dimensions, the effect of line
broadening in the other dimension must be consid-
ered in the line shape simulation. This was achieved
by simulating simultaneously the cross-section of the
signal in both spectral dimensions using identical ex-
change parameters (P, and koff) but considering the
different peak separations (�νN and �νH) in each di-
mension. The relative intensities of lines in the second
dimension are used to scale the intensity of lines in
the first dimension and vice versa. This simple pro-
cedure allows fast simulations of series of line shapes
derived from HSQC spectra. In these calculations we
did not use a quantum-mechanical treatment of the
HSQC experiment. This is justified for exchange rates
which are significantly larger than the overall corre-
lation time of the protein τc and in the absence of
spin-spin couplings on the same order as exchange
rates. In a classical treatment all relaxation rates are
summarized in the line width of the signal. If the line
width does not change significantly between the free
and the complexed state of the protein the error arising
from a classical treatment is small.

The method described here was implemented in
MATLAB with an interface to the NMRLab (Günther
et al., 2000) processing package.

Theoretical concepts

Dynamic processes with reaction rates on a µs to
ms time scale that occur within the course of a sin-
gle free induction decay (FID) affect the line shape
of the corresponding signal (see Binsch, 1968; Rao,
1989; Sandström, 1982; Lian and Roberts, 1993 for

reviews). This phenomenon was first studied by An-
derson assuming Markovian transitions (Anderson,
1954). Qualitatively, in a two-state system the NMR
signal experiences its most extreme broadening at the
coalescence point where the exchange rate is kcoal. =
π �ν/

√
2 (�ν is the separation between lines). For

faster rates a single signal is observed at an intermedi-
ate chemical shift between that of the two exchanging
nuclei (fast exchange on an NMR timescale). Slower
processes will yield two distinguishable signals for the
exchanging nuclei.

A treatment of two-site chemical exchange based
on the Bloch equations (Bloch, 1946) was first derived
by Gutowsky et al. (1953):

M = iω1M0
[
(τA + τB) + τAτB (αApB + αBpA)

]
(1 + αAτA) (1 + αBτB) − 1

(1)

with αA = T −1
2 − i (�ω + δω/2) and αB = T −1

2 −
i (�ω − δω/2), τA = 1/kA = τ/pB and τB =
1/kB = τ/pA employing a reduced life time τ =
τAτB/τA + τB . Here �ω = 2π�ν, �ν is the sepa-
ration of lines in Hz; δω/2 is the width of the signal at
half height.

McConnell outlined a more common set of equa-
tions which describe the line shape of an NMR signal
that are subject to chemical exchange (McConnell,
1958).

To study exchange between multiple sites or reac-
tions involving more complex kinetic mechanisms it
is preferable to write the Bloch equations modified for
chemical exchange under steady-state conditions in a
matrix notation (Binsch, 1968):

AM = iCP, (2)

where M is a column vector containing the magneti-
zations Mi of the nuclei which are subject to chemical
exchange. P is a column vector with the populations
(mole fractions) of the reaction components and C =
γB1M0. A is a square matrix that contains the

A = 2πi (Iν − W0) + R2 + K, (3)

where I = the unity matrix, ν = a variable frequency
defining the frequency range, W0 = a diagonal ma-
trix with the larmor frequencies νi , R2 = a diagonal
matrix with transverse relaxation rates, R2 = 1/T2 =
π · LW (line width at half height) and K = a matrix
containing the rate constants.

The total magnetization is the sum of the individual
magnetization components:

Mtot = IT M = iC1T A−1P. (4)
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For exchange between two sites we obtain

Mtot = −iC[1, 1]A−1
[

p1

p2

]
.

The analytical solution of this equation is the
Gutowsky Equation (1).

However, it is more convenient to calculate line
shapes directly from Equation 4 . This requires the in-
version of the matrix A for each point of the spectrum.
For iterative line shape fitting, this procedure is too
time consuming. For this reason we have calculated
the corresponding frequency according to Equation 5:

F(t) = I exp [(−K + 2πiW0 − R2) t] P. (5)

This equation was first derived by Anderson (1954)
employing Markov processes for the transition be-
tween different states. In Equation 5 K, W0, R2 and
P are the same matrices as in Equations 3 and 4. Af-
ter Fourier transformation the resulting spectrum is
identical to that obtained using Equation 4 which had
been derived from the Bloch equations. This proce-
dure is much faster and has the intrinsic advantage
that typical processing steps such as zero filling or
apodization functions can be incorporated into the line
shape simulation. The calculation of the matrix ex-
ponential in Equation 5 is critical because the matrix
elements can become very large causing significant
numerical errors. This problem is particularly serious
when K contains large exchange rates. We therefore
use Padé rational polynomials to approximate matrix
exponentials (Moler and Loan, 1979).

Line shape analysis was traditionally used to study

two-site exchange processes (A
k1�
k2

B) in small organic

molecules using one-dimensional spectra. Exchange
between two states is described by the mole frac-
tions (= the population pi) of one of the two states
(pA = 1 − pB), the line widths of the two signals
and their frequency separation (�νAB). A popular
simplification is the use of reduced rates or lifetimes
τ = τ1τ2/(τ1 + τ2) = 1/(k1 + k2). However this sim-
plification may cause erroneous line shapes when the
two rates are different, i.e. when the equilibrium con-
stant Keq = k1

k2
is far from unity. The location of the

equilibrium is usually determined by thermodynamic
parameters and can often be shifted by changing tem-
perature. For two-site exchange processes the matrix
K adopts the form

K =
[

k1 −k2
−k2 k1

]
. (6)

Similar principles can be employed to study the
kinetics of reactions. Here the fate of the line shape
depends on the relative concentration of the reaction
partners. Sudmeier et al. (1980) have described the-
oretical line shapes for second order reactions of the
type

A + X
kon�
koff

B. (7)

When line shapes for A are obtained at different con-
centrations of the component X, they can be used to
study the kinetics of this reaction. The location of the
equilibrium can be conveniently adjusted by the addi-
tion of the component X. In equilibrium d[A]/dt =
d [B] /dt = 0 and therefore kon · [X]pA = koffpB =
koff(1 − pA). Because the equilibrium concentration
of X is usually unknown a rate k′

on = kon[X] is used.
τoff = k−1

off describes the life time of the state B. The
exchange matrix has the same form as for a simple
two-site exchange when k1 is substituted by kon [X]:

K =
[

kon [X] −koff
−koff kon [X]

]
=

[
k′

on −koff
−koff k′

on

]
.

For a given off-rate and a given set of populations
pA the effective on-rate kon [X] can be calculated for
each step. When line shapes are simulated for N dif-
ferent concentrations of X the minimum number of
parameters to be adjusted is N + 1: N population
values pA and the off-rate (koff). Figure 1 shows a
typical example for line shapes simulated for a fre-
quency separation of 150 Hz and an off-rate koff of
1000 Hz. When the simulations are to be compared
to experimental data, these N + 1 values can be ad-
justed manually comparing the observed data and the
simulated curves. If a least-squares procedure is used
the difference between the observed data and the sim-
ulated curves is minimized by adjusting koff and the
populations of pA.

In these kinds of analyses solvent exchange may
complicate line shapes. In 15N-edited spectra of the
free state of the protein will occasionally show lines
at a lower intensity due to slow exchange of amide
protons with protons from water. This can be handled
by adding a third reaction partner in slow exchange.
In our routines we simply add an outside equilibrium
constant Kex as a correction factor for the population
of the free protein. This treatment is equivalent to
adding an extra reaction component in slow exchange
except that no chemical shift must be assumed for an
additional reaction partner.
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Figure 1. Simulation of line shapes for subsequent steps of
a reaction of the type P + L � PL using Equation 5 with a
subsequent Fourier transformation. Populations (mole fractions)
of P were calculated for a dissociation constant KD of 10−6,
a protein concentration of 1 mM and a titration in equal steps
until an equimolar amount of ligand was added (population of
P: PP = [0.99, 0.83, 0.67, 0.50, 0.34, 0.17, 0.03, 0.01]T ). The
signals of P and PL were separated by 150 Hz and the off-rate was
1000 s−1. Peak centers of P and PL are marked by a red ‘�’. The
line width of P and PL was 15 Hz. The steps in the titration go from
blue to red.

Figure 2. Simulation of line shapes for a two-step mechanism

P + L
k12�
k21

PL∗ k23�
k32

PL. The off-rate for the binding step k21 is

1000 s−1, the rate for the exchange between PL and PL∗ is 10 s−1.
The equilibrium constant K = [PL] /

[
PL∗]

is 10 in A, 1 in B
and 0.1 in C. Frequency separations were 150 Hz between P and
PL∗ and 50 Hz between PL∗ and PL, peak centers of P, PL∗ and
PL are marked by a red ‘�’. In all three cases the populations of
P were PP = [0.99, 0.83, 0.67, 0.50, 0.34, 0.17, 0.03, 0.01]T . The
population of PL∗ was calculated by PPL∗ = (1 − PP)(K + 1) and
PPL = 1 − PP − PPL∗ . The line width of P, PL∗ and PL was 15 Hz.

Figure 3. Simulation of line shapes for a two-step mechanism

P
k12�
k21

P∗ + L
k23�
k32

PL. The rates k12 and k21 for the exchange between

P and P∗ were 10 s−1, the off-rate for the actual binding step

was 1000 s−1. The equilibrium rate K =
[
P∗]
[P] was 10.0 in A,

1.0 in B and 0.1 in C. Frequency separations were 50 Hz between
P and P ∗ and 150 Hz between P ∗ and PL, peak centers of P,
P∗ and PL are marked by a red ‘�’. Populations for PL were
PPL = [0.001, 0.17, 0.33, 0.50, 0.67, 0.83, 0.97, 0.99]T for PL.
Populations of P were calculated by PP = (1 − PP) / (K + 1)

and PP∗ = 1−PPL −PP. The line width of P, P∗ and PL was 15 Hz.

Figure 4. Simulation of a parallel reaction in which three forms
of a protein (P 1a, P1b and P1c) bind a ligand L leading to the
same product PL. Off-rates were 1000 s−1 for all three reaction
pathways.
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As will be shown elsewhere more complex mech-
anisms may be encountered in protein-ligand inter-
actions (Günther et al., 200; Weyrauch and Günther,
2002). Although line shapes may become too complex
for a rigorous simulation it is worthwhile to consider
the effect of more complex reactions on NMR line
shapes. For this reason we have included the pos-
sibility of simulating line shapes for sequential and
for parallel reactions in this software. Two types of
sequential reactions were included:

P + L
k12�
k21

PL∗ k23�
k32

PL (8)

and

P
k12�
k21

P∗ + L
k23�
k32

PL. (9)

Here P is always the free protein, PL the protein-
ligand complex. Reaction (8) can be regarded as
second order binding followed by an exchange step
between an intermediate PL∗ and the final product PL.
The first step of this reaction will cause successive
chemical shift changes for increasing concentrations
of L for fast exchange between P and PL∗. The second
step is determined by an equilibrium constant K =
[PL]
[PL∗]which depends solely on the reaction conditions.

The exchange matrix for reaction (8) is

K =

 k′

12 −k21 0
−k′

21 k12 + k23 −k32
0 −k23 k32




assuming that P cannot be converted to PL directly.
The population vector is P = [p(P), p(PL∗), p(PL)]
with p(P) + p(PL∗) + p(PL) = 1, K = k23/k32 =
p(PL)/p(PL∗). The reaction step is treated the same
way as for a simple one-step reaction, i.e., k12 =
k21p(PL∗)/p(P). It is convenient to calculate p(PL∗)
from p(P) and K according to p(PL∗) = 1 −
p(P)/K + 1. Thus a series of N line shapes is de-
fined by a population vector p(P) with N elements,
koff and the equilibrium constant K . Figure 2 shows
typical curves obtained for this mechanism. In all three
examples the off-rate for the first step of the reaction
was 1000 s−1, for the second step the on-rate was set to
10 s−1 and the corresponding off-rate was calculated
from the equilibrium constant K which is 10, 1.0 and
0.1 in Figures 2A, 2B and 2C, respectively. The loca-
tion of the lines of P, PL and PL∗ is indicated by a ‘
’.
Figure 2B shows that low intermediate concentrations
can cause line shapes which resemble those usually
attributed to slow exchange.

A similar K-matrix can be derived for reaction (9):

K =

 k12 −k21 0

−k21 k12 + k′
23 −k32

0 −k′
23 k32


 .

Here the kinetic mechanism is defined by an equiv-
alent set of rules. Again the sum of the populations
of all components must be one. An equilibrium con-
stant is defined as K = k12/k21 = p(P)/p(P∗) and
k23 = k32 · p(PL)/p(P∗). Again a convenient sim-
plification may be applied to reduce the number of
adjustable parameters by p(P) = 1 − p(PL)/K + 1.
Line shapes for this reaction type are displayed in
Figure 3. Here, the equilibrium constant K between
free protein and the intermediate P* was again varied
between 0.1 and 10.0. The rate for the exchange be-
tween P and P∗ is 10 s−1, the off-rate for the actual
binding step is 1000 s−1. When the equilibrium con-
stant Keq = P∗/P is large we observe binding curves
originating from P∗ where P∗ is in an equilibrium with
P and thus its intensity is slightly reduced. Figure 3b
shows the case where equal amounts of P and P∗ are
present in all steps of the reaction and exchange be-
tween P and P∗ is slow. Because only P∗ binds the
ligand L, the titration starts at the chemical shift of P∗.
In Figure 3c the equilibrium is shifted towards P, i.e.,
there is always only a low amount of P∗ present. If
P∗(rather than P) binds the ligand L, the resulting line
shapes again resemble the case of slow off-rates. The
relevance of this type of reaction for biomolecules will
be discussed elsewhere (Günther et al., 2002).

NMRKIN also contains a parallel mechanism for
reactions of the type

In this case p(P1a)+p(P1b)+p(P1c)+p(PL) = 1
and the exchange matrix is

K =




ka12 −ka21
kb12 −kb21

kc12 −kc21
−ka12 −kb12 −kc12 ka21 + kb21 + kc21


 .

It has been assumed that P1a, P1b and P1c cannot ex-
change with each other. The result of a simulation for
p(P1a) = p(P1b) = p(P1c) is shown in Figure 4.
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Implementation of line shape calculation in
NMRKIN

The matrix notation used in this work was directly
implemented within the MATLAB language. Our rou-
tines use vectorized programming as far as possible.
However, the calculation of the matrix exponential
must be performed for each point on the time axis.
When the program is started a setup file is requested
which determines all important parameters and de-
termines the mechanism to be used. This includes a
selection for one or two-dimensional data fitting. Our
routines can be used for theoretical simulations or to
simulate experimental data. Using a non-linear least
squares optimization algorithm (Dennis, 1977) line
shapes can be fitted within a few seconds on a standard
personal computer. The error of the least-squares fit
depends on the type of line shapes and the exchange
regime. The best results are obtained for systems in
fast exchange with visible intermediate line broaden-
ing. When lines are not broadened in intermediate
steps because exchange processes are very fast, only
a lower limit can be determined from NMR data.

Input data may be a MATLAB matrix or in ASCII
format and can readily be generated from NMRLab or
any other NMR processing software capable of writing
ASCII files. Parameter adjustment can be performed
manually or by a least squares routine available in the
MATLAB optimization toolbox.

The MATLAB routines used in NMRKIN are
listed in Table 1. The calculation is started using
a master routine fitftex which calls a number of
subroutines specified in the parameter file. Several
sample parameter files including those used to simu-
late curves in this work are provided. The parameter
file determines the mechanism used and contains the
kinetic parameters. The mechanisms that have been
implemented are listed in Table 1. For m21 which is
an implementation of a reaction with second order
binding

of the type P+ L
kon�
koff

PL automatic data fitting of ex-

perimental line shapes is available. To avoid negative

values for populations and rates in least squares op-
timizations, squares of populations and rates are used
as penalty functions when negative values arise. Least
squares optimizations converge only when reasonable
starting parameters are available. Manual adjustment
of parameters is often advisable, especially when peak
shapes or the baseline are not ideal.

Additional kinetic mechanisms can be easily im-
plemented following the examples provided in NM-
RKIN. The implementation of new kinetic models is
very straightforward. The required routines are in-
ternally split in two sections: An inner section with
the K-matrix and an outer section implementing the
specific kinetic relationships for a given mechanism.

The NMRKIN suite of MATLAB routines along
with sample data and fitting results are available on
the NMRLab WEB page (www.nmrlab.net).

Results and discussion

The simulation method was applied to data for the in-
teraction of the N-terminal SH2 domain (N-SH2) of
the p85 regulatory subunit of PI3-kinase with a peptide
(EEEpYMPME-NH 2) derived from polyoma virus
middle T antigen. The interaction of the two proteins is
known to be important for tumor formation. We have
previously analyzed the interactions between the MT
N-SH2 interaction using genetics (Yoakim et al., 1992,
1994) and NMR (Günther et al., 1996, 2001; Weber
et al., 2000).

Figure 5 shows the 1H cross-sections of signals
of the K346 residue of the N-SH2 in a titration with
MT (dotted line) together with simulated line shapes
calculates as described by Equation 5 with subsequent
Fourier transformation (straight line). Optimal values
for the populations P of the protein in each of the 7
steps of the titration and the off-rate were obtained
by a least squares optimization. The contribution of
the exchange broadening in the 15N dimension on
the 1H-signal was considered during the simulation
although its contribution was small because the 15N
chemical shift change was only 20 Hz. The final off-
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Figure 5. Figure 7.

Figure 5. 1H cross-section of the signal of residue K346 of the p85 N-SH2 in a titration with MT peptide (EEEpYMPME-

NH2) (lines with ♦ from blue to red) and simulated lines (straight lines). Experimental lines were derived from a HSQC
spectrum recorded on an AMX500 spectrometer employing mlev decoupling (Bax and Davis, 1985) during acquisition in
the fast dimension and decoupling in the incremented dimension by applying a 15N 180◦ pulse in the middle of the evolu-
tion period. Water suppression was achieved employing a Messerle pulse (Messerle et al., 1989) and otherwise as reported
in (Günther et al., 1996). Optimal simulation parameters were obtained by fitting signals employing Equation 5 with a
subsequent Fourier transformation for an exchange matrix for a two-state exchange model (6) to the experimental signal.
The effect of the second dimension on one-dimensional cross-sections was considered by scaling intensities as described in the text. The signal
was automatically fitted employing a least squares minimization optimizing the population P for each of the 7 spectra and the off-rate. The
calculated off rate was 700 s−1. Peak centers of P and PL are marked by a red ‘�’.

Figure 7. Cross-sections in the 15N-dimension of HSQC spectra for residue I381 in a titration of the P395S mutant
of the p85 N-SH2 with MT. Experimental signals (lines with ♦ from blue to red) and simulated line shapes (solid line)
assuming a mechanism as described by Equation 8 with koff = k21 = 1000 s−1 for the first step of the
reaction and koff = 10 s−1 for k32; p(P ) = [0.99, 0.97, 0.88, 0.7, 0.3, 0.12, 0.08, 0.01, 0.01, 0.01]T , p(PL∗) =[0.01,0.03,0.11,0.3,0.4,
0.5,0.56,0.41,0.01,0.01]T . Peak centers of P and PL are marked by a red ‘�’.
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Table 1. Routines in NMRKIN

nmrkin.m Calling routine

mklspar.m Read and check parameters

testpar.m Sample parameter file

redat.m Read experimental data

m11.m Mechanism file for two-site exchange (A � B)

m21.m Mechanism file for A+X � B

m2111.m Mechanism file for A+X � A* �B

m1121.m Mechanism file for A � A*+X �B

m321.m Mechanism file for parallel reaction

wdwf.m Calculate window functiona

aApodization routine from NMRLab.

rate was ∼700 s−1, corresponding to a life time of
∼1.4 ms. The unsymmetric course of the series of
line shapes and the observed broadening of the line
shapes depending on the concentration of the ligand
was well represented by the simulation. The error of
such simulations depends not only on the quality of the
experimental lines but also on the exchange regime.
For very fast exchange or close to the coalescence
point the error will be much higher because line shapes
become relatively insensitive for exchange rates.

Figure 6 shows another example, S339 of the N-
SH2 upon titration with the same MT peptide, where
the chemical shift changed in both dimensions of the
HSQC spectrum. Cross-sections for each dimension
were simulated. The least-squares optimization was
allowed to alter koff and the population of one reaction
component for each of the 7 lines. The simulation also
required the consideration of an external exchange
process for the free protein (Kex = 0.89) because the
intensity of the first line was smaller than the intensity
of the last line of the spectral series. The final off-rate
for each dimension was 1000 s−1.

Simulation without the consideration of the second
dimension yielded erroneous line shapes and incor-
rect kinetic constants (Figures 6C and 6D). When the
1H line shapes of S339 were simulated without con-
sidering the second dimension the best fit that could
be obtained had a koff value of 250 s−1 (Figure 6C).
A simulation at a koff of 1000 s−1 (Figure 6D) was
obviously inadequate.

Figure 7 depicts a more complex type of line shape
observed for the titration of residue I381 of the P395S
mutant (Yoakim et al., 1994) of the p85 N-SH2. The
experimental line shapes (♦) represent a cross-sections
in the 15N dimension; the proton dimension was not
affected in this titration. The data can be simulated

using the mechanism of Equation 8. The simulation
reflects the principal features of these line shapes
reasonably well including the late peak just above
140 Hz, but the kinetic mechanism underlying these
line shapes is clearly even more complex. Signals to-
wards the end of the titration show multiple shoulders.
In addition, the ratio of populations of PL∗ and PL
is not constant. Complex line shapes in titrations of
proteins with small ligands will be described in de-
tail elsewhere (Günther et al., 2001; Weyrauch and
Günther, 2001).

In summary we provide simple routines that can be
used to simulate one-dimensional line shapes derived
from two-dimensional NMR spectra and that allow the
derivation of off rates. Using line shapes from two-
dimensional NMR spectra of 15N-labeled proteins has
an inherent advantage that the effect of binding on two
adjacent nuclei can be used.

A fully satisfactory simulation of experimental line
shapes is only possible for the simple case of a one-
step reaction. However, simulations of line shapes
for more complex mechanisms may still be useful for
a qualitative discussion of possible mechanisms for
protein-ligand interactions.
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